Mapping class groups Problem sheet 3

Lent 2021

Questions marked with a * are optional.

1. Let S be hyperbolic, and let Σ be a connected, finite-sheeted covering space of S. Prove that there is a subgroup of finite index $\Gamma \leq \operatorname{Mod}(S)$, a subgroup $\Gamma^{\prime} \leq \operatorname{Mod}(\Sigma)$ and a short exact sequence

$$
1 \rightarrow K \rightarrow \Gamma^{\prime} \rightarrow \Gamma \rightarrow 1
$$

where K is the group of deck transformations of Σ over S.
2. Consider a closed, orientable surface S of genus $g>1$.
(i) What is the maximal dimension of a simplex of the complex of curves $C(S)$?
(ii) Prove that the number of $\operatorname{Mod}(S)$-orbits of maximal simplices is equal to the number of connected, trivalent graphs with $2 g-2$ vertices.
(iii) How many orbits of maximal simplices are there when $g=2$?
3. If $g>1$, prove the complex of curves $C\left(S_{g}\right)$ is locally infinite; that is, every vertex of $C\left(S_{g}\right)$ adjoins infinitely many edges.
4. Let S be closed and hyperbolic. For a pair of essential simple closed curves α, β on S, let $d(\alpha, \beta)$ be the number edges in the shortest path in the 1 -skeleton of $C(S)$ between the isotopy classes of α and β. Prove that $d(\alpha, \beta) \leq 2 i(\alpha, \beta)$ as long as $i(\alpha, \beta) \geq 1$. Is there an inequality in the other direction?
5. Prove the following variant of Lemma 10.6 from lectures. Let X be a path-connected simplicial complex, and let G be a group acting on X by simplicial automorphisms. Suppose that Y is a subcomplex whose G-translates cover X; that is, $G Y=X$. Then the set of elements

$$
\{g \in G \mid g Y \cap Y \neq \varnothing\}
$$

generates G.
6. Consider a surface S with $n>0$ punctures. The arc graph $A(S)$ is defined as follows. The vertices are isotopy classes of unoriented, simple, properly embedded arcs in S. Two vertices α, β are joined by an edge if $i(\alpha, \beta)=0$.
(a) Describe the arc graph of the once-punctured torus T_{*}^{2}. Draw a natural picture of $A\left(T_{*}^{2}\right)$ in the (compactified) upper half-plane.
(b) Prove that $A\left(T_{*}^{2}\right)$ is connected.
7. Define a variant of the curve complex of the torus, $C^{\prime}\left(T^{2}\right)$, as follows. The vertices are isotopy classes of unoriented, essential, simple closed curves. Vertices represented by curves α, β are joined by an edge if $i(\alpha, \beta)=1$.
(a) Prove that $C^{\prime}\left(T^{2}\right)$ is connected.
(b) Formulate a similar definition for $C^{\prime}\left(S_{0,0,4}\right)$, where $S_{0,0,4}$ is the 4 -holed sphere, and prove that your $C^{\prime}\left(S_{0,0,4}\right)$ is connected.
8. Prove that $S L_{2}(\mathbb{Z})$ is generated by the matrices

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \text { and }\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) .
$$

9. * Let S be a compact hyperbolic surface. A pants decomposition $\underline{\alpha}$ of S is a multicurve α on S such that every component of the cut surface S_{α} is homeomorphic to a pair of pants. The pants graph $P(S)$ is defined as follows. The vertices are isotopy classes of pants decompositions of S. Two vertices

$$
\underline{\alpha}=\alpha_{1} \sqcup \ldots \sqcup \alpha_{n}, \underline{\beta}=\beta_{1} \sqcup \ldots \sqcup \beta_{n}
$$

are joined by an edge if, after renumbering:
(a) α_{i} is isotopic to β_{i} for all $i>1$;
(b) if $S_{\alpha_{2}, \ldots, \alpha_{n}}$ is a one-holed torus then $i\left(\alpha_{1}, \beta_{1}\right)=1$;
(c) if $S_{\alpha_{2}, \ldots, \alpha_{n}}$ is a four-holed sphere then $i\left(\alpha_{1}, \beta_{1}\right)=2$.

Prove that $P(S)$ is connected for sufficiently complicated surfaces S. [Hint: Find a natural embedding of $P(S)$ into $C(S)$.] What is the stabiliser of a vertex in the pants graph?

