Mapping class groups Problem sheet 3

Lent 2021

Questions marked with a * are optional.

1. Let S be hyperbolic, and let Σ be a connected, finite-sheeted covering space of S. Prove that there is a subgroup of finite index $\Gamma \leq \operatorname{Mod}(S)$, a subgroup $\Gamma' \leq \operatorname{Mod}(\Sigma)$ and a short exact sequence

$$1 \to K \to \Gamma' \to \Gamma \to 1$$
,

where K is the group of deck transformations of Σ over S.

- 2. Consider a closed, orientable surface S of genus q > 1.
 - (i) What is the maximal dimension of a simplex of the complex of curves C(S)?
 - (ii) Prove that the number of Mod(S)-orbits of maximal simplices is equal to the number of connected, trivalent graphs with 2g-2 vertices.
 - (iii) How many orbits of maximal simplices are there when g = 2?
- 3. If g > 1, prove the complex of curves $C(S_g)$ is locally infinite; that is, every vertex of $C(S_g)$ adjoins infinitely many edges.
- 4. Let S be closed and hyperbolic. For a pair of essential simple closed curves α, β on S, let $d(\alpha, \beta)$ be the number edges in the shortest path in the 1-skeleton of C(S) between the isotopy classes of α and β . Prove that $d(\alpha, \beta) \leq 2i(\alpha, \beta)$ as long as $i(\alpha, \beta) \geq 1$. Is there an inequality in the other direction?

5. Prove the following variant of Lemma 10.6 from lectures. Let X be a path-connected simplicial complex, and let G be a group acting on X by simplicial automorphisms. Suppose that Y is a subcomplex whose G-translates cover X; that is, GY = X. Then the set of elements

$$\{g \in G \mid gY \cap Y \neq \emptyset\}$$

generates G.

- 6. Consider a surface S with n > 0 punctures. The arc graph A(S) is defined as follows. The vertices are isotopy classes of unoriented, simple, properly embedded arcs in S. Two vertices α, β are joined by an edge if $i(\alpha, \beta) = 0$.
 - (a) Describe the arc graph of the once-punctured torus T_*^2 . Draw a natural picture of $A(T_*^2)$ in the (compactified) upper half-plane.
 - (b) Prove that $A(T_*^2)$ is connected.
- 7. Define a variant of the curve complex of the torus, $C'(T^2)$, as follows. The vertices are isotopy classes of unoriented, essential, simple closed curves. Vertices represented by curves α, β are joined by an edge if $i(\alpha, \beta) = 1$.
 - (a) Prove that $C'(T^2)$ is connected.
 - (b) Formulate a similar definition for $C'(S_{0,0,4})$, where $S_{0,0,4}$ is the 4-holed sphere, and prove that your $C'(S_{0,0,4})$ is connected.
- 8. Prove that $SL_2(\mathbb{Z})$ is generated by the matrices

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 and $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

9. * Let S be a compact hyperbolic surface. A pants decomposition $\underline{\alpha}$ of S is a multicurve α on S such that every component of the cut surface S_{α} is homeomorphic to a pair of pants. The pants graph P(S) is defined as follows. The vertices are isotopy classes of pants decompositions of S. Two vertices

$$\underline{\alpha} = \alpha_1 \sqcup \ldots \sqcup \alpha_n, \ \underline{\beta} = \beta_1 \sqcup \ldots \sqcup \beta_n$$

are joined by an edge if, after renumbering:

- (a) α_i is isotopic to β_i for all i > 1;
- (b) if $S_{\alpha_2,...,\alpha_n}$ is a one-holed torus then $i(\alpha_1,\beta_1)=1$;
- (c) if $S_{\alpha_2,...,\alpha_n}$ is a four-holed sphere then $i(\alpha_1,\beta_1)=2$.

Prove that P(S) is connected for sufficiently complicated surfaces S. [Hint: Find a natural embedding of P(S) into C(S).] What is the stabiliser of a vertex in the pants graph?